2 Geographic data in R
Prerequisites
This is the first practical chapter of the book, and therefore it comes with some software requirements. We assume that you have an up-to-date version of R installed and that you are comfortable using software with a command-line interface such as the integrated development environment (IDE) RStudio.
If you are new to R, we recommend reading Chapter 2 of the online book Efficient R Programming by Gillespie and Lovelace (2016) and learning the basics of the language with reference to resources such as Grolemund and Wickham (2016).
Organize your work (e.g., with RStudio projects) and give scripts sensible names such as 02-chapter.R
to document the code you write as you learn.
The packages used in this chapter can be installed with the following commands:5
install.packages("sf")
install.packages("terra")
install.packages("spData")
install.packages("spDataLarge", repos = "https://nowosad.r-universe.dev")
All the packages needed to reproduce the contents of the book can be installed with the following command: remotes::install_github("geocompr/geocompkg")
.
The necessary packages can be ‘loaded’ (technically they are attached) with the library()
function as follows:
library(sf) # classes and functions for vector data
#> Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
The output from library(sf)
reports which versions of key geographic libraries such as GEOS the package is using, as outlined in Section 2.2.1.
The other packages that were installed contain data that will be used in the book:
library(spData) # load geographic data
library(spDataLarge) # load larger geographic data
2.1 Introduction
This chapter will provide brief explanations of the fundamental geographic data models: vector and raster. We will introduce the theory behind each data model and the disciplines in which they predominate, before demonstrating their implementation in R.
The vector data model represents the world using points, lines and polygons. These have discrete, well-defined borders, meaning that vector datasets usually have a high level of precision (but not necessarily accuracy as we will see in Section 2.5). The raster data model divides the surface up into cells of constant size. Raster datasets are the basis of background images used in web-mapping and have been a vital source of geographic data since the origins of aerial photography and satellite-based remote sensing devices. Rasters aggregate spatially specific features to a given resolution, meaning that they are consistent over space and scalable (many worldwide raster datasets are available).
Which to use? The answer likely depends on your domain of application:
- Vector data tends to dominate the social sciences because human settlements tend to have discrete borders
- Raster dominates many environmental sciences because of the reliance on remote sensing data
There is much overlap in some fields and raster and vector datasets can be used together: ecologists and demographers, for example, commonly use both vector and raster data. Furthermore, it is possible to convert between the two forms (see Section 5.4). Whether your work involves more use of vector or raster datasets, it is worth understanding the underlying data model before using them, as discussed in subsequent chapters. This book uses sf and raster packages to work with vector data and raster datasets, respectively.
2.2 Vector data
vector
class (note the monospace
font) in R.
The former is a data model, the latter is an R class just like data.frame
and matrix
.
Still, there is a link between the two: the spatial coordinates which are at the heart of the geographic vector data model can be represented in R using vector
objects.
The geographic vector data model is based on points located within a coordinate reference system (CRS). Points can represent self-standing features (e.g., the location of a bus stop) or they can be linked together to form more complex geometries such as lines and polygons. Most point geometries contain only two dimensions (3-dimensional CRSs contain an additional \(z\) value, typically representing height above sea level).
In this system London, for example, can be represented by the coordinates c(-0.1, 51.5)
.
This means that its location is -0.1 degrees east and 51.5 degrees north of the origin.
The origin in this case is at 0 degrees longitude (the Prime Meridian) and 0 degree latitude (the Equator) in a geographic (‘lon/lat’) CRS (Figure 2.1, left panel).
The same point could also be approximated in a projected CRS with ‘Easting/Northing’ values of c(530000, 180000)
in the British National Grid, meaning that London is located 530 km East and 180 km North of the \(origin\) of the CRS.
This can be verified visually: slightly more than 5 ‘boxes’ — square areas bounded by the gray grid lines 100 km in width — separate the point representing London from the origin (Figure 2.1, right panel).
The location of National Grid’s origin, in the sea beyond South West Peninsular, ensures that most locations in the UK have positive Easting and Northing values.6 There is more to CRSs, as described in Sections 2.4 and 6 but, for the purposes of this section, it is sufficient to know that coordinates consist of two numbers representing distance from an origin, usually in \(x\) then \(y\) dimensions.
sf is a package providing a class system for geographic vector data. Not only does sf supersede sp, it also provides a consistent command-line interface to GEOS and GDAL, superseding rgeos and rgdal (described in Section 1.5). This section introduces sf classes in preparation for subsequent chapters (Chapters 5 and 7 cover the GEOS and GDAL interface, respectively).
2.2.1 An introduction to simple features
Simple features is an open standard developed and endorsed by the Open Geospatial Consortium (OGC), a not-for-profit organization whose activities we will revisit in a later chapter (in Section 7.5). Simple Features is a hierarchical data model that represents a wide range of geometry types. Of 17 geometry types supported by the specification, only 7 are used in the vast majority of geographic research (see Figure 2.2); these core geometry types are fully supported by the R package sf (E. Pebesma 2018).7
sf can represent all common vector geometry types (raster data classes are not supported by sf): points, lines, polygons and their respective ‘multi’ versions (which group together features of the same type into a single feature). sf also supports geometry collections, which can contain multiple geometry types in a single object. sf provides the same functionality (and more) previously provided in three packages — sp for data classes (E. Pebesma and Bivand 2018), rgdal for data read/write via an interface to GDAL and PROJ (R. Bivand, Keitt, and Rowlingson 2018) and rgeos for spatial operations via an interface to GEOS (R. Bivand and Rundel 2018).
To re-iterate the message from Chapter 1, geographic R packages have a long history of interfacing with lower level libraries, and sf continues this tradition with a unified interface to recent versions GEOS for geometry operations, the GDAL library for reading and writing geographic data files, and the PROJ library for representing and transforming projected coordinate reference systems.
Through s2,
”
an R interface to Google’s spherical geometry library s2
, sf also has access to fast and accurate “measurements and operations on non-planar geometries” (bivand_progress_2021?).
Since sf version 1.0.0, launched in June 2021, s2 functionality is now used by default on geometries with geographic (longitude/latitude) coordinate systems, a unique feature of sf that differs from spatial libraries that only support GEOS for geometry operations such as the Python package GeoPandas.
We will discuss s2 in subsequent chapters.
sf’s ability to integrate multiple powerful libraries for geocomputation into a single framework is a notable achievement that reduces ‘barriers to entry’ into the world of reproducible geographic data analysis with high-performance libraries. sf’s functionality is well documented on its website at r-spatial.github.io/sf/ which contains 7 vignettes. These can be viewed offline as follows:
vignette(package = "sf") # see which vignettes are available
vignette("sf1") # an introduction to the package
As the first vignette explains, simple feature objects in R are stored in a data frame, with geographic data occupying a special column, usually named ‘geom’ or ‘geometry.’
We will use the world
dataset provided by spData, loaded at the beginning of this chapter, to show what sf
objects and how they work.
world
is an ‘sf
data frame’ containing spatial and attribute columns, the names of which are returned by the function names()
(the last column in this example contains the geographic information):
class(world)
#> [1] "sf" "tbl_df" "tbl" "data.frame"
names(world)
#> [1] "iso_a2" "name_long" "continent" "region_un" "subregion" "type"
#> [7] "area_km2" "pop" "lifeExp" "gdpPercap" "geom"
The contents of this geom
column give sf
objects their spatial powers: world$geom
is a ‘list column’ that contains all the coordinates of the country polygons.
sf
objects can be plotted quickly with the base R function plot()
;
the following command creates Figure 2.3.
plot(world)
Note that instead of creating a single map by default for geographic objects, as most GIS programs do, plot()
ing sf
objects results in a map for each variable in the datasets.
This behavior can be useful for exploring the spatial distribution of different variables and is discussed further in Section 2.2.3.
More broadly, treating geographic objects as regular data frames with spatial powers has many advantages, especially if you are already used to working with data frames.
The commonly used summary()
function, for example, provides a useful overview of the variables within the world
object.
summary(world["lifeExp"])
#> lifeExp geom
#> Min. :50.6 MULTIPOLYGON :177
#> 1st Qu.:65.0 epsg:4326 : 0
#> Median :72.9 +proj=long...: 0
#> Mean :70.9
#> 3rd Qu.:76.8
#> Max. :83.6
#> NA's :10
Although we have only selected one variable for the summary()
command, it also outputs a report on the geometry.
This demonstrates the ‘sticky’ behavior of the geometry columns of sf objects, meaning the geometry is kept unless the user deliberately removes them, as we’ll see in Section 3.2.
The result provides a quick summary of both the non-spatial and spatial data contained in world
: the mean average life expectancy is 71 years (ranging from less than 51 to more than 83 years with a median of 73 years) across all countries.
MULTIPOLYGON
in the summary output above refers to the geometry type of features (countries) in the world
object.
This representation is necessary for countries with islands such as Indonesia and Greece.
Other geometry types are described in Section 2.2.5.
It is worth taking a deeper look at the basic behavior and contents of this simple feature object, which can usefully be thought of as a ‘spatial data frame.’
sf
objects are easy to subset.
The code below shows its first two rows and three columns.
The output shows two major differences compared with a regular data.frame
: the inclusion of additional geographic data (geometry type
, dimension
, bbox
and CRS information - epsg (SRID)
, proj4string
), and the presence of a geometry
column, here named geom
:
world_mini = world[1:2, 1:3]
world_mini
#> Simple feature collection with 2 features and 3 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -180 ymin: -18.3 xmax: 180 ymax: -0.95
#> Geodetic CRS: WGS 84
#> # A tibble: 2 × 4
#> iso_a2 name_long continent geom
#> <chr> <chr> <chr> <MULTIPOLYGON [°]>
#> 1 FJ Fiji Oceania (((-180 -16.6, -180 -16.5, -180 -16, -180 -16.1, -…
#> 2 TZ Tanzania Africa (((33.9 -0.95, 31.9 -1.03, 30.8 -1.01, 30.4 -1.13,…
All this may seem rather complex, especially for a class system that is supposed to be simple. However, there are good reasons for organizing things this way and using sf.
Before describing each geometry type that the sf package supports, it is worth taking a step back to understand the building blocks of sf
objects.
Section 2.2.8 shows how simple features objects are data frames, with special geometry columns.
These spatial columns are often called geom
or geometry
: world$geom
refers to the spatial element of the world
object described above.
These geometry columns are ‘list columns’ of class sfc
(see Section 2.2.7).
In turn, sfc
objects are composed of one or more objects of class sfg
: simple feature geometries that we describe in Section 2.2.6.
To understand how the spatial components of simple features work, it is vital to understand simple feature geometries.
For this reason we cover each currently supported simple features geometry type in Section 2.2.5 before moving on to describe how these can be represented in R using sfg
objects, which form the basis of sfc
and eventually full sf
objects.
=
to create a new object called world_mini
in the command world_mini = world[1:2, 1:3]
.
This is called assignment.
An equivalent command to achieve the same result is world_mini <- world[1:2, 1:3]
.
Although ‘arrow assigment’ is more commonly used, we use ‘equals assignment’ because it’s slightly faster to type and easier to teach due to compatibility with commonly used languages such as Python and JavaScript.
Which to use is largely a matter of preference as long as you’re consistent (packages such as styler can be used to change style).
2.2.2 Why simple features?
Simple features is a widely supported data model that underlies data structures in many GIS applications including QGIS and PostGIS. A major advantage of this is that using the data model ensures your work is cross-transferable to other set-ups, for example importing from and exporting to spatial databases.
A more specific question from an R perspective is “why use the sf package when sp is already tried and tested?” There are many reasons (linked to the advantages of the simple features model):
- Fast reading and writing of data
- Enhanced plotting performance
- sf objects can be treated as data frames in most operations
-
sf function names are relatively consistent and intuitive (all begin with
st_
) -
sf functions can be combined using
%>%
operator and works well with the tidyverse collection of R packages.
sf’s support for tidyverse packages is exemplified by the provision of two functions for reading in data, st_read()
and read_sf()
which store attributes in base R data.frame
and tidyverse tibble
classes respectively, as demonstrated below (see Chapter 3 for more on manipulating geographic data with tidyverse functions and Section 7.6.1 for further details on reading and writing geographic vector data with R):
nc_dfr = st_read(system.file("shape/nc.shp", package="sf"))
#> Reading layer `nc' from data source
#> `/usr/local/lib/R/site-library/sf/shape/nc.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 100 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -84.3 ymin: 33.9 xmax: -75.5 ymax: 36.6
#> Geodetic CRS: NAD27
nc_tbl = read_sf(system.file("shape/nc.shp", package="sf"))
class(nc_dfr)
#> [1] "sf" "data.frame"
class(nc_tbl)
#> [1] "sf" "tbl_df" "tbl" "data.frame"
sf is now the go-to package for analysis of spatial vector data in R (not withstanding the spatstat package ecosystem which provides numerous functions for spatial statistics). Many popular packages build on sf, as shown by the rise in its popularity in terms of number of downloads per day, as shown in Section 1.4 in the previous chapter. However, it will take many years for most packages to fully transition away from older packages such as sp, many packages depend on both sf and sp and some will never switch (bivand_progress_2021?).
In this context it is important to note that people still using sp (and related rgeos and rgdal) packages are advised to switch to sf.
The description of rgeos on CRAN, for example, states that the package “will be retired by the end of 2023” and advises people to plan for the transition to sf.
In other words, sf is future proof but sp is not.
For workflows that depend on the legacy class system, sf
objects can be converted from and to the Spatial
class of the sp package as follows:
2.2.3 Basic map making
Basic maps are created in sf with plot()
.
By default this creates a multi-panel plot (like sp’s spplot()
), one sub-plot for each variable of the object, as illustrated in the left-hand panel in Figure 2.4.
A legend or ‘key’ with a continuous color is produced if the object to be plotted has a single variable (see the right-hand panel).
Colors can also be set with col =
, although this will not create a continuous palette or a legend.
Plots are added as layers to existing images by setting add = TRUE
.8
To demonstrate this, and to provide a taster of content covered in Chapters 3 and 4 on attribute and spatial data operations, the subsequent code chunk combines countries in Asia:
world_asia = world[world$continent == "Asia", ]
asia = st_union(world_asia)
We can now plot the Asian continent over a map of the world.
Note that the first plot must only have one facet for add = TRUE
to work.
If the first plot has a key, reset = FALSE
must be used (result not shown):
Adding layers in this way can be used to verify the geographic correspondence between layers:
the plot()
function is fast to execute and requires few lines of code, but does not create interactive maps with a wide range of options.
For more advanced map making we recommend using dedicated visualization packages such as tmap (see Chapter 8).
2.2.4 Base plot arguments
There are various ways to modify maps with sf’s plot()
method.
Because sf extends base R plotting methods plot()
’s arguments such as main =
(which specifies the title of the map) work with sf
objects (see ?graphics::plot
and ?par
).9
Figure 2.5 illustrates this flexibility by overlaying circles, whose diameters (set with cex =
) represent country populations, on a map of the world.
An unprojected version of this figure can be created with the following commands (see exercises at the end of this chapter and the script 02-contplot.R
to reproduce Figure 2.5):
plot(world["continent"], reset = FALSE)
cex = sqrt(world$pop) / 10000
world_cents = st_centroid(world, of_largest = TRUE)
plot(st_geometry(world_cents), add = TRUE, cex = cex)
The code above uses the function st_centroid()
to convert one geometry type (polygons) to another (points) (see Chapter 5), the aesthetics of which are varied with the cex
argument.
sf’s plot method also has arguments specific to geographic data. expandBB
, for example, can be used to plot an sf
object in context:
it takes a numeric vector of length four that expands the bounding box of the plot relative to zero in the following order: bottom, left, top, right.
This is used to plot India in the context of its giant Asian neighbors, with an emphasis on China to the east, in the following code chunk, which generates Figure 2.6 (see exercises below on adding text to plots):
india = world[world$name_long == "India", ]
plot(st_geometry(india), expandBB = c(0, 0.2, 0.1, 1), col = "gray", lwd = 3)
plot(world_asia[0], add = TRUE)
Note the use of [0]
to keep only the geometry column and lwd
to emphasize India.
See Section 8.6 for other visualization techniques for representing a range of geometry types, the subject of the next section.
2.2.5 Geometry types
Geometries are the basic building blocks of simple features.
Simple features in R can take on one of the 17 geometry types supported by the sf package.
In this chapter we will focus on the seven most commonly used types: POINT
, LINESTRING
, POLYGON
, MULTIPOINT
, MULTILINESTRING
, MULTIPOLYGON
and GEOMETRYCOLLECTION
.
Find the whole list of possible feature types in the PostGIS manual.
Generally, well-known binary (WKB) or well-known text (WKT) are the standard encoding for simple feature geometries. WKB representations are usually hexadecimal strings easily readable for computers. This is why GIS and spatial databases use WKB to transfer and store geometry objects. WKT, on the other hand, is a human-readable text markup description of simple features. Both formats are exchangeable, and if we present one, we will naturally choose the WKT representation.
The basis for each geometry type is the point.
A point is simply a coordinate in 2D, 3D or 4D space (see vignette("sf1")
for more information) such as (see left panel in Figure 2.7):
POINT (5 2)
A linestring is a sequence of points with a straight line connecting the points, for example (see middle panel in Figure 2.7):
LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)
A polygon is a sequence of points that form a closed, non-intersecting ring. Closed means that the first and the last point of a polygon have the same coordinates (see right panel in Figure 2.7).10
- Polygon without a hole:
POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5))
So far we have created geometries with only one geometric entity per feature. However, sf also allows multiple geometries to exist within a single feature (hence the term ‘geometry collection’) using “multi” version of each geometry type:
- Multipoint:
MULTIPOINT (5 2, 1 3, 3 4, 3 2)
- Multilinestring:
MULTILINESTRING ((1 5, 4 4, 4 1, 2 2, 3 2), (1 2, 2 4))
- Multipolygon:
MULTIPOLYGON (((1 5, 2 2, 4 1, 4 4, 1 5), (0 2, 1 2, 1 3, 0 3, 0 2)))
Finally, a geometry collection can contain any combination of geometries including (multi)points and linestrings (see Figure 2.9):
- Geometry collection:
GEOMETRYCOLLECTION (MULTIPOINT (5 2, 1 3, 3 4, 3 2), LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2))
2.2.6 Simple feature geometries (sfg)
The sfg
class represents the different simple feature geometry types in R: point, linestring, polygon (and their ‘multi’ equivalents, such as multipoints) or geometry collection.
Usually you are spared the tedious task of creating geometries on your own since you can simply import an already existing spatial file.
However, there are a set of functions to create simple feature geometry objects (sfg
) from scratch if needed.
The names of these functions are simple and consistent, as they all start with the st_
prefix and end with the name of the geometry type in lowercase letters:
- A point:
st_point()
- A linestring:
st_linestring()
- A polygon:
st_polygon()
- A multipoint:
st_multipoint()
- A multilinestring:
st_multilinestring()
- A multipolygon:
st_multipolygon()
- A geometry collection:
st_geometrycollection()
sfg
objects can be created from three base R data types:
- A numeric vector: a single point
- A matrix: a set of points, where each row represents a point, a multipoint or linestring
- A list: a collection of objects such as matrices, multilinestrings or geometry collections
The function st_point()
creates single points from numeric vectors:
st_point(c(5, 2)) # XY point
#> POINT (5 2)
st_point(c(5, 2, 3)) # XYZ point
#> POINT Z (5 2 3)
st_point(c(5, 2, 1), dim = "XYM") # XYM point
#> POINT M (5 2 1)
st_point(c(5, 2, 3, 1)) # XYZM point
#> POINT ZM (5 2 3 1)
The results show that XY (2D coordinates), XYZ (3D coordinates) and XYZM (3D with an additional variable, typically measurement accuracy) point types are created from vectors of length 2, 3, and 4, respectively.
The XYM type must be specified using the dim
argument (which is short for dimension).
By contrast, use matrices in the case of multipoint (st_multipoint()
) and linestring (st_linestring()
) objects:
# the rbind function simplifies the creation of matrices
## MULTIPOINT
multipoint_matrix = rbind(c(5, 2), c(1, 3), c(3, 4), c(3, 2))
st_multipoint(multipoint_matrix)
#> MULTIPOINT ((5 2), (1 3), (3 4), (3 2))
## LINESTRING
linestring_matrix = rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2))
st_linestring(linestring_matrix)
#> LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)
Finally, use lists for the creation of multilinestrings, (multi-)polygons and geometry collections:
## POLYGON
polygon_list = list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5)))
st_polygon(polygon_list)
#> POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5))
## POLYGON with a hole
polygon_border = rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5))
polygon_hole = rbind(c(2, 4), c(3, 4), c(3, 3), c(2, 3), c(2, 4))
polygon_with_hole_list = list(polygon_border, polygon_hole)
st_polygon(polygon_with_hole_list)
#> POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5), (2 4, 3 4, 3 3, 2 3, 2 4))
## MULTILINESTRING
multilinestring_list = list(rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2)),
rbind(c(1, 2), c(2, 4)))
st_multilinestring((multilinestring_list))
#> MULTILINESTRING ((1 5, 4 4, 4 1, 2 2, 3 2), (1 2, 2 4))
## MULTIPOLYGON
multipolygon_list = list(list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5))),
list(rbind(c(0, 2), c(1, 2), c(1, 3), c(0, 3), c(0, 2))))
st_multipolygon(multipolygon_list)
#> MULTIPOLYGON (((1 5, 2 2, 4 1, 4 4, 1 5)), ((0 2, 1 2, 1 3, 0 3, 0 2)))
## GEOMETRYCOLLECTION
gemetrycollection_list = list(st_multipoint(multipoint_matrix),
st_linestring(linestring_matrix))
st_geometrycollection(gemetrycollection_list)
#> GEOMETRYCOLLECTION (MULTIPOINT (5 2, 1 3, 3 4, 3 2),
#> LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2))
2.2.7 Simple feature columns (sfc)
One sfg
object contains only a single simple feature geometry.
A simple feature geometry column (sfc
) is a list of sfg
objects, which is additionally able to contain information about the coordinate reference system in use.
For instance, to combine two simple features into one object with two features, we can use the st_sfc()
function.
This is important since sfc
represents the geometry column in sf data frames:
# sfc POINT
point1 = st_point(c(5, 2))
point2 = st_point(c(1, 3))
points_sfc = st_sfc(point1, point2)
points_sfc
#> Geometry set for 2 features
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 2 xmax: 5 ymax: 3
#> CRS: NA
#> POINT (5 2)
#> POINT (1 3)
In most cases, an sfc
object contains objects of the same geometry type.
Therefore, when we convert sfg
objects of type polygon into a simple feature geometry column, we would also end up with an sfc
object of type polygon, which can be verified with st_geometry_type()
.
Equally, a geometry column of multilinestrings would result in an sfc
object of type multilinestring:
# sfc POLYGON
polygon_list1 = list(rbind(c(1, 5), c(2, 2), c(4, 1), c(4, 4), c(1, 5)))
polygon1 = st_polygon(polygon_list1)
polygon_list2 = list(rbind(c(0, 2), c(1, 2), c(1, 3), c(0, 3), c(0, 2)))
polygon2 = st_polygon(polygon_list2)
polygon_sfc = st_sfc(polygon1, polygon2)
st_geometry_type(polygon_sfc)
#> [1] POLYGON POLYGON
#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
# sfc MULTILINESTRING
multilinestring_list1 = list(rbind(c(1, 5), c(4, 4), c(4, 1), c(2, 2), c(3, 2)),
rbind(c(1, 2), c(2, 4)))
multilinestring1 = st_multilinestring((multilinestring_list1))
multilinestring_list2 = list(rbind(c(2, 9), c(7, 9), c(5, 6), c(4, 7), c(2, 7)),
rbind(c(1, 7), c(3, 8)))
multilinestring2 = st_multilinestring((multilinestring_list2))
multilinestring_sfc = st_sfc(multilinestring1, multilinestring2)
st_geometry_type(multilinestring_sfc)
#> [1] MULTILINESTRING MULTILINESTRING
#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
It is also possible to create an sfc
object from sfg
objects with different geometry types:
# sfc GEOMETRY
point_multilinestring_sfc = st_sfc(point1, multilinestring1)
st_geometry_type(point_multilinestring_sfc)
#> [1] POINT MULTILINESTRING
#> 18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
As mentioned before, sfc
objects can additionally store information on the coordinate reference systems (CRS).
To specify a certain CRS, we can use the epsg (SRID)
or proj4string
attributes of an sfc
object.
The default value of epsg (SRID)
and proj4string
is NA
(Not Available), as can be verified with st_crs()
:
st_crs(points_sfc)
#> Coordinate Reference System: NA
All geometries in an sfc
object must have the same CRS.
We can add coordinate reference system as a crs
argument of st_sfc()
.
This argument accepts an integer with the epsg
code such as 4326
, which automatically adds the ‘proj4string’ (see Section 2.4):
# EPSG definition
points_sfc_wgs = st_sfc(point1, point2, crs = 4326)
st_crs(points_sfc_wgs)
#> Coordinate Reference System:
#> User input: EPSG:4326
#> wkt:
#> GEOGCRS["WGS 84",
#> DATUM["World Geodetic System 1984",
#> ELLIPSOID["WGS 84",6378137,298.257223563,
#> LENGTHUNIT["metre",1]]],
#> PRIMEM["Greenwich",0,
#> ANGLEUNIT["degree",0.0174532925199433]],
#> CS[ellipsoidal,2],
#> AXIS["geodetic latitude (Lat)",north,
#> ORDER[1],
#> ANGLEUNIT["degree",0.0174532925199433]],
#> AXIS["geodetic longitude (Lon)",east,
#> ORDER[2],
#> ANGLEUNIT["degree",0.0174532925199433]],
#> USAGE[
#> SCOPE["unknown"],
#> AREA["World"],
#> BBOX[-90,-180,90,180]],
#> ID["EPSG",4326]]
It also accepts a raw proj4string (result not shown):
# PROJ4STRING definition
st_sfc(point1, point2, crs = "+proj=longlat +datum=WGS84 +no_defs")
2.2.8 The sf class
Sections 2.2.5 to 2.2.7 deal with purely geometric objects, ‘sf geometry’ and ‘sf column’ objects, respectively. These are geographic building blocks of geographic vector data represented as simple features. The final building block is non-geographic attributes, representing the name of the feature or other attributes such as measured values, groups, and other things.
To illustrate attributes, we will represent a temperature of 25°C in London on June 21st, 2017.
This example contains a geometry (the coordinates), and three attributes with three different classes (place name, temperature and date).11
Objects of class sf
represent such data by combining the attributes (data.frame
) with the simple feature geometry column (sfc
).
They are created with st_sf()
as illustrated below, which creates the London example described above:
lnd_point = st_point(c(0.1, 51.5)) # sfg object
lnd_geom = st_sfc(lnd_point, crs = 4326) # sfc object
lnd_attrib = data.frame( # data.frame object
name = "London",
temperature = 25,
date = as.Date("2017-06-21")
)
lnd_sf = st_sf(lnd_attrib, geometry = lnd_geom) # sf object
What just happened? First, the coordinates were used to create the simple feature geometry (sfg
).
Second, the geometry was converted into a simple feature geometry column (sfc
), with a CRS.
Third, attributes were stored in a data.frame
, which was combined with the sfc
object with st_sf()
.
This results in an sf
object, as demonstrated below (some output is omitted):
lnd_sf
#> Simple feature collection with 1 features and 3 fields
#> ...
#> name temperature date geometry
#> 1 London 25 2017-06-21 POINT (0.1 51.5)
class(lnd_sf)
#> [1] "sf" "data.frame"
The result shows that sf
objects actually have two classes, sf
and data.frame
.
Simple features are simply data frames (square tables), but with spatial attributes stored in a list column, usually called geometry
, as described in Section 2.2.1.
This duality is central to the concept of simple features:
most of the time a sf
can be treated as and behaves like a data.frame
.
Simple features are, in essence, data frames with a spatial extension.
2.3 Raster data
The spatial raster data model represents the world with the continuous grid of cells (often also called pixels; Figure 2.10:A). This data model often refers to so-called regular grids, in which each cell has the same, constant size – and we will focus on the regular grids in this book only. However, several other types of grids exist, including rotated, sheared, rectilinear, and curvilinear grids (see Chapter 1 of E. Pebesma and Bivand (2022) or Chapter 2 of Tennekes and Nowosad (2022)).
The raster data model usually consists of a raster header and a matrix (with rows and columns) representing equally spaced cells (often also called pixels; Figure 2.10:A).12 The raster header defines the coordinate reference system, the extent and the origin. The origin (or starting point) is frequently the coordinate of the lower-left corner of the matrix (the terra package, however, uses the upper left corner, by default (Figure 2.10:B)). The header defines the extent via the number of columns, the number of rows and the cell size resolution. Hence, starting from the origin, we can easily access and modify each single cell by either using the ID of a cell (Figure 2.10:B) or by explicitly specifying the rows and columns. This matrix representation avoids storing explicitly the coordinates for the four corner points (in fact it only stores one coordinate, namely the origin) of each cell corner as would be the case for rectangular vector polygons. This and map algebra (Section 4.3.2) makes raster processing much more efficient and faster than vector data processing. However, in contrast to vector data, the cell of one raster layer can only hold a single value. The value might be numeric or categorical (Figure 2.10:C).
Raster maps usually represent continuous phenomena such as elevation, temperature, population density or spectral data (Figure 2.11). Of course, we can represent discrete features such as soil or land-cover classes also with the help of a raster data model (Figure 2.11). Consequently, the discrete borders of these features become blurred, and depending on the spatial task a vector representation might be more suitable.
2.3.2 An introduction to terra
The terra package supports raster objects in R. It provides an extensive set of functions to create, read, export, manipulate and process raster datasets. Aside from general raster data manipulation, terra provides many low-level functions that can form the basis to develop more advanced raster functionality. terra also lets you work on large raster datasets that are too large to fit into the main memory. In this case, terra provides the possibility to divide the raster into smaller chunks, and processes these iteratively instead of loading the whole raster file into RAM.
For the illustration of terra concepts, we will use datasets from the spDataLarge.
It consists of a few raster objects and one vector object covering an area of the Zion National Park (Utah, USA).
For example, srtm.tif
is a digital elevation model of this area (for more details, see its documentation ?srtm
).
First, let’s create a SpatRaster
object named my_rast
:
raster_filepath = system.file("raster/srtm.tif", package = "spDataLarge")
my_rast = rast(raster_filepath)
Typing the name of the raster into the console, will print out the raster header (dimensions, resolution, extent, CRS) and some additional information (class, data source, summary of the raster values):
my_rast
#> class : SpatRaster
#> dimensions : 457, 465, 1 (nrow, ncol, nlyr)
#> resolution : 0.000833, 0.000833 (x, y)
#> extent : -113, -113, 37.1, 37.5 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> source : srtm.tif
#> name : srtm
#> min value : 1024
#> max value : 2892
Dedicated functions report each component: dim(my_rast)
returns the number of rows, columns and layers; ncell()
the number of cells (pixels); res()
the spatial resolution; ext()
its spatial extent; and crs()
its coordinate reference system (raster reprojection is covered in Section 6.6).
inMemory()
reports whether the raster data is stored in memory or on disk.
help("terra-package")
returns a full list of all available terra functions.
2.3.3 Basic map making
Similar to the sf package, terra also provides plot()
methods for its own classes.
plot(my_rast)
There are several other approaches for plotting raster data in R that are outside the scope of this section, including:
-
plotRGB()
function from the terra package to create a Red-Green-Blue plot based on three layers in aSpatRaster
object - packages such as tmap to create static and interactive maps of raster and vector objects (see Chapter 8)
- functions, for example
levelplot()
from the rasterVis package, to create facets, a common technique for visualizing change over time
2.3.4 Raster classes
The SpatRaster
class represents rasters object in terra.
The easiest way to create a raster object in R is to read-in a raster file from disk or from a server (Section 7.6.2.
single_raster_file = system.file("raster/srtm.tif", package = "spDataLarge")
single_rast = rast(raster_filepath)
The terra package supports numerous drivers with the help of the GDAL library. Rasters from files are usually not read entirely into RAM, with an exception of their header and a pointer to the file itself.
Rasters can also be created from scratch using the same rast()
function.
This is illustrated in the subsequent code chunk, which results in a new SpatRaster
object.
The resulting raster consists of 36 cells (6 columns and 6 rows specified by nrows
and ncols
) centered around the Prime Meridian and the Equator (see xmin
, xmax
, ymin
and ymax
parameters).
The default CRS of raster objects is WGS84, but can be changed with the crs
argument.
This means the unit of the resolution is in degrees which we set to 0.5 (resolution
).
Values (vals
) are assigned to each cell: 1 to cell 1, 2 to cell 2, and so on.
Remember: rast()
fills cells row-wise (unlike matrix()
) starting at the upper left corner, meaning the top row contains the values 1 to 6, the second 7 to 12, etc.
new_raster = rast(nrows = 6, ncols = 6, resolution = 0.5,
xmin = -1.5, xmax = 1.5, ymin = -1.5, ymax = 1.5,
vals = 1:36)
For other ways of creating raster objects, see ?rast
.
The SpatRaster
class also handles multiple layers, which typically correspond to a single multispectral satellite file or a time-series of rasters.
multi_raster_file = system.file("raster/landsat.tif", package = "spDataLarge")
multi_rast = rast(multi_raster_file)
multi_rast
#> class : SpatRaster
#> dimensions : 1428, 1128, 4 (nrow, ncol, nlyr)
#> resolution : 30, 30 (x, y)
#> extent : 301905, 335745, 4111245, 4154085 (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / UTM zone 12N (EPSG:32612)
#> source : landsat.tif
#> names : lan_1, lan_2, lan_3, lan_4
#> min values : 7550, 6404, 5678, 5252
#> max values : 19071, 22051, 25780, 31961
nlyr()
retrieves the number of layers stored in a SpatRaster
object:
nlyr(multi_rast)
#> [1] 4
For multi-layer raster objects, layers can be selected with terra::subset()
.13
It accepts a layer number or its name as the second argument:
The opposite operation, combining several SpatRaster
objects into one, can be done using the c
function:
multi_rast34 = c(multi_rast3, multi_rast4)
SpatRaster
objects do not store raster values, but rather a pointer to the file itself.
This has a significant side-effect – they cannot be directly saved to ".rds"
or ".rda"
files or used in cluster computing.
In these cases, there are two possible solutions: (1) use of the wrap()
function that creates a special kind of temporary object that can be saved as an R object or used in cluster computing, or (2) save the object as a regular raster with writeRaster()
.
2.4 Coordinate Reference Systems
Vector and raster spatial data types share concepts intrinsic to spatial data. Perhaps the most fundamental of these is the Coordinate Reference System (CRS), which defines how the spatial elements of the data relate to the surface of the Earth (or other bodies). CRSs are either geographic or projected, as introduced at the beginning of this chapter (see Figure 2.1). This section will explain each type, laying the foundations for Section 6 on CRS transformations.
2.4.1 Geographic coordinate systems
Geographic coordinate systems identify any location on the Earth’s surface using two values — longitude and latitude (see left panel of Figure 2.14). Longitude is location in the East-West direction in angular distance from the Prime Meridian plane. Latitude is angular distance North or South of the equatorial plane. Distances in geographic CRSs are therefore not measured in meters. This has important consequences, as demonstrated in Section 6.
The surface of the Earth in geographic coordinate systems is represented by a spherical or ellipsoidal surface. Spherical models assume that the Earth is a perfect sphere of a given radius – they have the advantage of simplicity but, at the same time, they are inaccurate: the Earth is not a sphere! Ellipsoidal models are defined by two parameters: the equatorial radius and the polar radius. These are suitable because the Earth is compressed: the equatorial radius is around 11.5 km longer than the polar radius (Maling 1992).14
Ellipsoids are part of a wider component of CRSs: the datum.
This contains information on what ellipsoid to use and the precise relationship between the Cartesian coordinates and location on the Earth’s surface.
There are two types of datum — geocentric (such as WGS84
) and local (such as NAD83
).
You can see examples of these two types of datums in Figure 2.13.
Black lines represent a geocentric datum, which center is located in the Earth’s center of gravity and is not optimized for a specific location.
In a local datum, shown as a purple dashed line, the ellipsoidal surface is shifted to align with the surface at a particular location.
These allow local variations in Earth’s surface, for example due to large mountain ranges, to be accounted for in a local CRS.
This can be seen in Figure 2.13, where the local datum is fitted to the area of Philippines, but is misaligned with most of the rest of the planet’s surface.
Both datums in Figure 2.13 are put on top of a geoid - a model of global mean sea level.15
2.4.2 Projected coordinate reference systems
All projected CRSs are based on a geographic CRS, described in the previous section, and rely on map projections to convert the three-dimensional surface of the Earth into Easting and Northing (x and y) values in a projected CRS. Projected CRSs are based on Cartesian coordinates on an implicitly flat surface (right panel of Figure 2.14). They have an origin, x and y axes, and a linear unit of measurement such as meters.
This transition cannot be done without adding some deformations. Therefore, some properties of the Earth’s surface are distorted in this process, such as area, direction, distance, and shape. A projected coordinate system can preserve only one or two of those properties. Projections are often named based on a property they preserve: equal-area preserves area, azimuthal preserve direction, equidistant preserve distance, and conformal preserve local shape.
There are three main groups of projection types - conic, cylindrical, and planar (azimuthal).
In a conic projection, the Earth’s surface is projected onto a cone along a single line of tangency or two lines of tangency.
Distortions are minimized along the tangency lines and rise with the distance from those lines in this projection.
Therefore, it is the best suited for maps of mid-latitude areas.
A cylindrical projection maps the surface onto a cylinder.
This projection could also be created by touching the Earth’s surface along a single line of tangency or two lines of tangency.
Cylindrical projections are used most often when mapping the entire world.
A planar projection projects data onto a flat surface touching the globe at a point or along a line of tangency.
It is typically used in mapping polar regions.
sf_proj_info(type = "proj")
gives a list of the available projections supported by the PROJ library.
A quick summary of different projections, their types, properties, and suitability can be found in “Map Projections” (1993).
2.4.3 CRSs in R
Spatial R packages support a wide range of CRSs and they use the long-established PROJ library. Two recommend ways to describe CRSs in R are (a) Spatial Reference System Identifier (SRID) or (b) well-known text (known as WKT216) definitions. Both of these approaches have advantages and disadvantages.
A SRID is a unique value used to identify coordinate reference system definitions in a form of AUTHORITY:CODE. The most popular registry of SRIDs is EPSG, however, other registries, such as ESRI or OGR, exist. For example, EPSG:4326 represents the latitude/longitude WGS84 CRS, and ESRI:54030 - Robinson projection. SRIDs are usually short and therefore easier to remember. Each SRID is associated with a well-known text (WKT2) definition of the coordinate reference system.
A WKT2 describes coordinate reference systems (CRSs) and coordinates operations between them in the form of well-known text strings. It is exhaustive, detailed, and precise (as you can see later in this section), allowing for unambiguous CRSs storage and transformations. It consists of all information about any given CRS, including its datum and ellipsoid, prime meridian, projection, units, etc. This feature also makes the WKT2 approach more complicated and usually too complex to be manually defined.
In the past, the proj4string
definitions, was the standard way to specify coordinate operations and store CRSs.
These string representations, built on a key=value form (e.g, +proj=longlat +datum=WGS84 +no_defs
), are, however, currently discouraged in most cases.
PROJ version 6 and further still allows to use proj4string
s to define coordinate operations, but some proj4string
keys are no longer supported or are not advisable to use (e.g., +nadgrids
, +towgs84
, +k
, +init=epsg:
) and only three datums (i.e., WGS84, NAD83, and NAD27) can be directly set in proj4string
.
Importantly, proj4string
s are not used to store CRSs anymore.
Longer explanations on the recent changes in the PROJ library and why proj4string
was replaced by WKT2
can be found in R. S. Bivand (2020), Chapter 2 of E. Pebesma and Bivand (2022), and blog post by Floris Vanderhaeghe.
Let’s look at how CRSs are stored in R spatial objects and how they can be set. For this, we need to read-in a vector dataset:
vector_filepath = system.file("shapes/world.gpkg", package = "spData")
new_vector = read_sf(vector_filepath)
Our new object, new_vector
, is a polygon representing a world map data (?spData::world
).
In sf the CRS of an object can be retrieved using st_crs()
.
st_crs(new_vector) # get CRS
#> Coordinate Reference System:
#> User input: WGS 84
#> wkt:
#> GEOGCRS["WGS 84",
#> DATUM["World Geodetic System 1984",
#> ELLIPSOID["WGS 84",6378137,298.257223563,
#> LENGTHUNIT["metre",1]]],
#> PRIMEM["Greenwich",0,
#> ANGLEUNIT["degree",0.0174532925199433]],
#> CS[ellipsoidal,2],
#> AXIS["geodetic latitude (Lat)",north,
#> ORDER[1],
#> ANGLEUNIT["degree",0.0174532925199433]],
#> AXIS["geodetic longitude (Lon)",east,
#> ORDER[2],
#> ANGLEUNIT["degree",0.0174532925199433]],
#> USAGE[
#> SCOPE["unknown"],
#> AREA["World"],
#> BBOX[-90,-180,90,180]],
#> ID["EPSG",4326]]
CRS in the sf
objects is a list of two elements - input
and wkt
.
The input
element is quite flexible, and depending on the input file or user input, can contain SRID representation (e.g., "EPSG:4326"
), CRS’s name (e.g., "WGS84"
), or even proj4string
definition.
The wkt
element stores the WKT2 representation, which is used when saving the object to a file or doing any coordinate operations.
Above, we can see that the new_vector
object has the WGS84 ellipsoid, uses the Greenwich prime meridian, and the latitude and longitude axis order.
In this case, we also have some additional elements, such as USAGE
explaining the area suitable for the use of this CRS, and ID
pointing to the CRS’s SRID - "EPSG:4326"
.
The st_crs
function also has one helpful feature – we can retrieve some additional information about the used CRS.
For example, try to run:
-
st_crs(new_vector)$IsGeographic
to check is the CRS is geographic or not -
st_crs(new_vector)$units_gdal
to find out the CRS units -
st_crs(new_vector)$srid
extracts its SRID (when available) -
st_crs(new_vector)$proj4string
extracts theproj4string
representation
In cases when a coordinate reference system (CRS) is missing or the wrong CRS is set, the st_set_crs()
function can be used:
new_vector = st_set_crs(new_vector, "EPSG:4326") # set CRS
The second argument in the above function could be either SRID ("EPSG:4326"
in the example), complete WKT2 representation, proj4string
, or CRS extracted from the existing object with st_crs()
.
The crs()
function can be used to access CRS information from a SpatRaster
object17:
crs(my_rast) # get CRS
#> [1] "GEOGCRS[\"WGS 84\",\n DATUM[\"World Geodetic System 1984\",\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n CS[ellipsoidal,2],\n AXIS[\"geodetic latitude (Lat)\",north,\n ORDER[1],\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n AXIS[\"geodetic longitude (Lon)\",east,\n ORDER[2],\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4326]]"
The output is the WKT2 representation of CRS.
The same function, crs()
, is can be also used to set a CRS for raster objects.
crs(my_rast) = "EPSG:26912" # set CRS
Here, we can use either SRID, complete WKT2 representation, proj4string
, or CRS extracted from other existing object with crs()
.
Importantly, the st_crs()
and crs()
functions do not alter coordinates’ values or geometries.
Their role is only to set a metadata information about the object CRS.
We will expand on CRSs and explain how to project from one CRS to another in Chapter 6.
2.5 Units
An important feature of CRSs is that they contain information about spatial units. Clearly, it is vital to know whether a house’s measurements are in feet or meters, and the same applies to maps. It is good cartographic practice to add a scale bar or some other distance indicator onto maps to demonstrate the relationship between distances on the page or screen and distances on the ground. Likewise, it is important to formally specify the units in which the geometry data or cells are measured to provide context, and ensure that subsequent calculations are done in context.
A novel feature of geometry data in sf
objects is that they have native support for units.
This means that distance, area and other geometric calculations in sf return values that come with a units
attribute, defined by the units package (E. Pebesma, Mailund, and Hiebert 2016).
This is advantageous, preventing confusion caused by different units (most CRSs use meters, some use feet) and providing information on dimensionality.
This is demonstrated in the code chunk below, which calculates the area of Luxembourg:
luxembourg = world[world$name_long == "Luxembourg", ]
st_area(luxembourg) # requires the s2 package in recent versions of sf
#> 2.41e+09 [m^2]
The output is in units of square meters (m2), showing that the result represents two-dimensional space.
This information, stored as an attribute (which interested readers can discover with attributes(st_area(luxembourg))
), can feed into subsequent calculations that use units, such as population density (which is measured in people per unit area, typically per km2).
Reporting units prevents confusion.
To take the Luxembourg example, if the units remained unspecified, one could incorrectly assume that the units were in hectares.
To translate the huge number into a more digestible size, it is tempting to divide the results by a million (the number of square meters in a square kilometer):
st_area(luxembourg) / 1000000
#> 2409 [m^2]
However, the result is incorrectly given again as square meters. The solution is to set the correct units with the units package:
Units are of equal importance in the case of raster data.
However, so far sf is the only spatial package that supports units, meaning that people working on raster data should approach changes in the units of analysis (for example, converting pixel widths from imperial to decimal units) with care.
The my_rast
object (see above) uses a WGS84 projection with decimal degrees as units.
Consequently, its resolution is also given in decimal degrees but you have to know it, since the res()
function simply returns a numeric vector.
res(my_rast)
#> [1] 0.000833 0.000833
If we used the UTM projection, the units would change.
Again, the res()
command gives back a numeric vector without any unit, forcing us to know that the unit of the UTM projection is meters.
2.6 Exercises
E1. Use summary()
on the geometry column of the world
data object. What does the output tell us about:
- Its geometry type?
- The number of countries?
- Its coordinate reference system (CRS)?
E2. Run the code that ‘generated’ the map of the world in Section 2.2.4 Base plot arguments. Find two similarities and two differences between the image on your computer and that in the book.
- What does the
cex
argument do (see?plot
)? - Why was
cex
set to thesqrt(world$pop) / 10000
? - Bonus: experiment with different ways to visualize the global population.
E3. Use plot()
to create maps of Nigeria in context (see Section 2.2.4 Base plot arguments).
- Adjust the
lwd
,col
andexpandBB
arguments ofplot()
. - Challenge: read the documentation of
text()
and annotate the map.
E4. Create an empty SpatRaster
object called my_raster
with 10 columns and 10 rows.
Assign random values between 0 and 10 to the new raster and plot it.
E5. Read-in the raster/nlcd.tif
file from the spDataLarge package.
What kind of information can you get about the properties of this file?
E6. Check the CRS of the raster/nlcd.tif
file from the spDataLarge package.
What kind of information you can learn from it?